

ZB2 Description

The ZB2 is a low-cost microcontroller development board that is compatible with the Arduino development tools. The board includes an XBee interface and a real-time clock with battery backup. The board is 4.4" x 2" and contains pins for all the ATmega328 and XBee I/O pins.

Features

- Compatible with the Arduino development tools.
- ATmega328P running at 12MHz. Replaceable and upgradeable.
- XBee interface socket.
- Real-time Clock with two alarms and battery backup.
- $5V \pm 200 mV$ for loads up to 100mA.
- 20x2 I/O connector that is compatible with the ZB1 and NB1x peripherals.
- ICSP port (3.3V levels)
- A/D reference supply filtered per Atmel specification.
- Reset circuit per Atmel specification.
- Accessories include a MIDI Interface, 32-channel LED driver, prototyping board, LCD interface and thermocouple interface.

Semiconductors are electrostatic-sensitive devices. Proper ESD handling precautions need to be taken to avoid damage.

The Bill of Materials (BOM) and Component List is in section 6. For full page assembly drawings see Figure 1 (top) and Figure 2 (bottom).

Extra care needs to be taken when soldering the rightangle connectors J1 and J2 (optional). The outer edge of the connector bodies should not protrude over the edge of the board. After soldering, the connector pins should be parallel to the board.

All of the headers supplied with the kit are breakaway headers. The single row headers, J3 (3x1) and J5 (6x1) may come as individual headers or as strips that need to be broken. Most kits will contain either two 6x1 headers or one 12x1. Break these headers to create J3 and J5. The optional double row header (J2) may be either a 13x2 or a 20x2 which needs to broken to form a 7x2 connector.

A DC source with current limiting is useful for testing each section of the ZB1 as you build it.

If you are not building the USB circuit or the 5V boost converter proceed to subsection 1.4.

1.1 Top Components

1.2 USB Circuit Assembly

Solder the top side components:

- J60
- U10 FT232RL
- U55
- C57, C56, C51
- R59
- R58
- R62

At this point clean the flux off of the top and bottom side of the board. After the board is cleaned visually inspect the board for solder shorts, opens and cold solder joints. If possible power up U10 with a current limited +3.3V supply by attaching clip leads to the pads of the LDO (U4). +3.3V connected to U4-2 and GND connects to U1-1. The current drawn from the +3.3V supply should not exceed a few milliamperes. If it does then check for solder bridges on U10 and U55. Solder the top side components:

- F1
- C10, C11

C10 and C11 are polarized parts. The long lead is the positive. The short lead is the negative. Make sure that the **positive** lead is inserted into positive hole in the PCB

• U4

Be careful to not mixup U4 and D3. U4 is marked MC33269T-3.3G Make sure that the tab is aligned to the tab marking on the PCB.

• D3

Be careful to not mixup D3 and U4. D3 is marked MBR1545CTG Make sure that the tab is aligned to the tab marking on the PCB.

- J9
- J10
- J8

J8 enables the usage of an external 3.3V power source with the ZB1. If you do not need this function then you can omit the installation of J9.

At this point clean the flux off of the top and bottom side of the board. After the board is cleaned visually inspect the board for solder shorts, opens and cold solder joints.

1.3.1 Testing the Power Suppy Circuit

If possible apply power through J10 with a current limited +5V supply. The current drawn from the +5V supply should not exceed a few milliamperes. If it does then verify the orientation on C10, C11, D3, U4.

At this point clean the flux off of the top and bottom side of the board. After the board is cleaned visually inspect the board for solder shorts, opens and cold solder joints. After inserting an ATmega168 into the U1 socket the microcontroller section of the ZB1 should be fully functional. If possibly apply power through J10 with a current limited +5V supply. The current drawn should not exceed 10mA (20mA if the J3 jumper is installed in the VCC position).

1.4 Microcontroller Section

1.5 Microcontroller Circuit Assembly

Solder the top side components:

- C1, C2, C3, C14
- C13, C1

• R2

The value and tolerance of R2 is not critical. Most kits will include a 347 Ω 1% resistor (orange, yellow, violet, black, brown). Kits may include a value between 200 Ω and 374 Ω .

• R3

 $10 \mathrm{K}\Omega$ (brown, black, black, red, brown)

- J3
- X1, C5, C9
- U1 (socket)
- J6
- J5
- J1

The J1 that is included with the ZB2 Kit is a right angle connector. If your application requires parallel board mounting or a cable connection then replace J1 with a vertical header. A 20x2 receptacle can also be used.

1.6 RTC Area

1.7 Real-time Clock Circuit Assembly

- X21 crystal
- U23 socket
- B21 battery holder

The battery holder consists of a holder and a negative contact. Solder the negative contact first.

- •
- R22, R23
 10KΩ (brown, black, black, red, brown)
- C23

1.8 XBee Area

Solder the top side components:

- U24 (XBee sockets) 2 10x1 2mm center receptacles.
- C24
- D4, D23, D24

The negative lead of the LED is the short lead. Align the short lead with the negative marking on the PCB.

1.9 Bottom Components

Solder the bottom side components:

• R1

The tolerance of R1 is not critical. Some kits include a 5% resistor others include a 1% resistor. The 5% resistor has four color bands (brown, black, orange, gold). The 1% resistor has five color bands (brown, black, black, red, brown)

• L1

The value of inductor L1 is not critical. Kits will contain an inductor with a value between $10\mu \rm H$ and $15\mu \rm H$

• D1

Align the cathode line with the silkscreen cathode line marking.

1.9.2 XBee Area

• R25,R26

The value and tolerance of R25 and R26 is not critical. Most kits will include a 347 Ω 1% resistor (orange, yellow, violet, black, brown). Kits may include a value between 200 Ω and 374 Ω .

• D21, D22

Align the cathode line with the silkscreen cathode line marking.

1.9.3 5V Boost Converter Assembly (optional)

- U31
- C31, C32
- C33

1.10 Electro-mechanical Components

The electro-mechanical components are sensitive to washing. Place all of these last and lightly wash afterwards. If water does get into these components let them dry out before applying power.

Solder the top side components:

- S2
- S1

1.11 Mounting Hardware

Space has been provided for four #2 hex standoffs and washers.

Remove the ATmega328P from the antistatic foam and insert it into the U1 socket aligning the notch in the IC package with notch mark indicated on the PCB silkscreen. Be careful to align pins on both sides of the socket prior to pressing the IC into the socket.

The board is now ready to program. To test the programming using the Arduino tools (see ??).

1.13 XBee Circuit Assembly

- C24
- D23, D24

1.14 Power Supply Circuit Assembly

Solder the top side components:

• C10, C11

C10 and C11 are polarized parts. The long lead is the positive. The short lead is the negative. Make sure that the **positive** lead is inserted into positive hole in the PCB

• U10

Make sure that the tab is aligned to the tab marking on the PCB.

• J10

1.15 Electro-mechanical Components

Since the reset switch (S1) is sensitive to washing it should be placed on last. Lightly clean the board after the switch is installed. If water does get into the switch let it dry out before applying power.

Solder the top side components:

• S1

1.16 IC Installation and Test

1.16.1 U23 (DS1337)

Remove the DS1337 from the antistatic foam and insert it into the socket aligning the notch in the IC package with the notch mark indicated on the PCB silkscreen. Be careful to align pins on both sides of the socket prior to pressing the IC into the socket.

1.16.2 U1 (ATmega328P)

Remove the ATmega328P from the antistatic foam and insert it into the socket aligning the notch in the IC package with the notch mark indicated on the PCB silkscreen. Be careful to align pins on both sides of the socket prior to pressing the IC into the socket. Install a CR1220 coin cell into the battery holder (B21) observing the polarity indicated on the holder.

The ZB2 should now be fully functional and is ready to program (see section 5). Depending on the application some of the pins on the U1 socket should be removed (see subsection 1.17).

1.17 Pin Removal

After operation of the ZB2 is verified it is recommended that some of the U1 pins be cut flush to the PCB level. Each application is different and needs to reviewed. Pins like XTAL1 and XTAL2 can be affected by stray capacitance and noise. For most applications cutting the XTAL1, XTAL2, AREF and AVCC is recommended.

If your application may change over time then leave all pins intact and use care in your layout.

1.17.1 XTAL Pins

The XTAL circuit is susceptible to stray capacitance and noise so pins 9 and 10 should be cut flush to the PCB.

1.17.2 AREF

If you are not using an external analog reference then cut pin 21 flush to the board.

1.17.3 AVCC

If you are not powering the ADC from a different source then pin 20 should be cut flush to the board.

2 IO Connectors

- J1 I/O connections from the ATmega328P. See ??
- J5 USB header for an FTDI TTL-232R-3V3 cable. This is only installed if the USB circuit is not populated.
- $\mathbf{J6}$ ICSP header
- J10 Input power jack. See subsection 3.1
- J60 USB Mini-B

3 Electrical Hints

3.1 Power Supply

The zb2 can be powered by a wall adapter or the USB port. The wall adapter and the USB port are diode or'ed and are connected to the input of a LDO regulator (U4).

It is critcal to keep the power dissipation in the LDO regulator (U4), to less than one watt. The voltage drop across U4 is

$$V_{drop} = V_{in} - 0.5V$$

where V_{in} is the greater of the wall adapter voltage or +5V (USB 5V supply). The power dissipated in U4 is given by

$$P_{diss} = V_{drop} \cdot I_{system}$$

where I_{system} is the load of the NB1 plus its peripheral circuitry.

3.2 Powering from the USB Port

The initial startup load of a device connected to the USB port must not exceed 10μ F in parallel with 44Ω ((USB-IF, 2000a)). Peripheral circuitry attached to the zb2 may produce a system load that exceeds the specification.

3.3 V_{IN}

 $\sum_{IN} V_{IN}$ is the input voltage from the positive terminal of J10. V_{IN} is prior to the input fuse, F1, so there is no current limiting or transient protection. The application circuitry must provide the required fault protection.

$3.4 \quad V_{BUS}$

 V_{BUS} is the unregulated voltage at the cathode of the or'ing diode (D3). Applications that require current beyond the current rating of the LDO regulator (U4) should use V_{BUS} . Since the only volage drop between the input power source and V_{BUS} is the V_f of the or'ing diode (D3) it is more efficient to use V_{BUS} rather than the +3.3V supply as an input voltage for other power conversions.

3.5 + 5V

The output of the optional +5V boost regulator is connected to J2 (which is also optional). The voltage regulation is $5V \pm 200$ mV for loads up to the maximum load of 100mA.

3.6 Debug LED

The debug LED, D4, can be connected to the +3.3V supply or to U1 pin 13 (PD7) of the ATmega328P. U1 pin 13 corresponds to Arduino pin "7".

LED jumper in the VCC position

 5

LED jumper in the Pin 7 position

3.7 XBee/XBee Pro

RF Exposure To satisfy FCC RF exposure requirements for mobile transmitting devices, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during device operation. To ensure compliance, operations at closer than this distance is not recommended. The antenna used for this transmitter must not be co-located in conjunction with any other antenna or transmitter.

The ZB1 can use either an XBee or XBee Pro. Since the startup delay is not implemented for the USB power supply the power consumption of a USB powered ZB1 needs to be kept to a maximum of 100mA. XBee Pro applications should only be powered by the wall adapter or an external regulated supply.

3.7.1 XBee Range

?? sumarizes the results of the MaxStream XBee and XBee Pro transmission performace tests (MaxStream, 2005a). Wireless Link Performance (99% Packet Throughput).

As noted in the MaxStream application note (MaxStream, 2005b):

Actual performance depends on many factors in the environment. Consequently, individual results may vary. Factors include: antenna orientation; antenna height, proximity of antenna to other objects such as an enclosure, PCB, or other mounting structures; trees; rain; snow; sleet; hail; bushes; shrubbery; flocks of birds; swarms of bees; moving vans; parked cars, trucks and vans; cars, trucks and vans in motion; intentional or unintentional interferers; etc. Longer distances may be possible with reduced throughput. Obstructions in the propagation path will affect performance. Other wireless networks or systems may affect performance.

The ZB2 real-time clock (RTC) consists of a DS1337 that is powered by a CR1220 coin cell or the ZB2 linear regulator (U10). The or'ing diodes, D21 and D22, will output the higher voltage to the RTC (U23).

Communication to the DS1337 is through the I²C interface (a.k.a. two-wire or TWI). The I²C pullup resistors are on board (10K Ω). The interrupt lines, /INTA and /INTB are jumpered to PC3 (Arduino pin 17) and PC0 (Arduino pin 14) respectively. There are no pullup resistors on the interrupt lines. If external pullups are not added then the internal pullups of the ATmega328P need to be used.

Programming the RTC requires a software library for the DS1337 and for the TWI interface. Both of these libraries are on the wiblocks site.

4.1 I²C Pullup Resistors

The maximum bus capacitance of the I^2C bus is 400pF. Unless a large number of devices are on the bus or devices are connected using long cables ZB2 system will not get close to this limit. The DS1337 represents a maximum load of 10pF.

The minimum pullup resistance is 966 Ω ($\frac{V_{CC}-0.4V}{3mA}$). The maximum value pullup resistance is

$$R_{pullup(max)} = \begin{cases} \frac{1000 \text{nS}}{C_{BUS}} & \text{if } F_{SCL} \leq 100 \text{kHz}, \\ \\ \frac{300 \text{nS}}{C_{BUS}} & \text{if } 100 \text{kHz} \ < F_{SCL} \leq 400 \text{kHz}. \end{cases}$$

where C_{BUS} is the maximum bus capacitance, , and V_{CC} is 3.3V for the ZB2.

With a 100pF load (10 times the DS1337 load), the maximum resistance for 400kHz operation is $3K\Omega$. For 100kHz the maximum resistance is $10K\Omega$. If only the DS1337 is on the I²C bus the maximum resistances would be $100K\Omega$ (100kHz) and $30K\Omega$ (400kHz). The minimum resistance, which is not dependent on bus capacitance, is 966 Ω for any operating frequency and C_{BUS} . (Atmel, 2009a)

CBUS	100 pF		400 pF	
Frequency	Resist	tance	Resis	tance
	Min	Max	Min	Max
100 kHz	$\begin{array}{c} 1150\Omega\\ 1150\Omega \end{array}$	10KΩ	1150Ω	2500Ω
400 kHz		3KΩ	-Not Pr	actical–

Table 2: I²C Pullup Resistors

4.2 DS1337 Interrupt Lines

The DS1337 interrupt lines, /INTA and /INTB are jumpered to PC3 (Arduino pin 17) and PC0 (Arduino pin 14) respectively. To disconnect /INTA cut jumper J24. To disconnect /INTB cut jumper J27.

There are no pullup resistors connected to the interrupt lines. To use the interrupt lines with the ATmega328P the internal pull-up resistors need to be enabled. For the ATmega328P $20K\Omega \leq R_{pullup} \leq 50K\Omega$ which is sufficient to pullup the DS1337 lines. (Atmel, 2009b).

4.3 RTC Battery Life

The DS1337 operates with a V_{CC} from 1.8V to 5.5V. When power is removed from the ZB2 the DS1337 is in standby mode and the maximum standby current is $1.5\mu A(\text{Maxim}, 2009a)$. The CR1220 coin cell has a capacity of 40mAH (to 2V). The battery life is ≈ 26000 hours.

4.4 Pinout

The input and output pins for the ZB2 are the socket pins of the microcontroller (U1). The pinout is listed in Table 3.

Pin Number	Pin Name	Arduino Number	Notes
2	RXD	0	
3	TXD	1	
4	PD2	2	
5	PD3	3	
6	PD4	4	
11	PD5	5	
12	PD6	6	
13	PD7	7	Debug LED
14	PB0	8	
15	PB1	9	
16	PB2	10	
17	PB3	11	MOSI
18	PB4	12	MISO
19	PB5	13	SCK
23	PC0	A0	
24	PC1	A1	
25	PC2	A2	
26	PC3	A3	
27	PC4	A4	SDA
28	PC5	A5	SCL
1	Reset		
9	XTAL1		PB6
10	XTAL2		PB7
7	VCC		
20	AVCC		
21	AREF		
8	GND		
22	GND		

Table 3: U1 Pinout

5 Programming the ZB2

The ZB2 can be programmed using the Arduino tools (version 0011 or later). Connect an FTDI TTL-232R-3V3 cable to header J5 with the black wire aligned to pin one.

In order for the Arduino tools to recognize the wiblocks boards additional lines need to be added to the boards.txt file. The additional lines are shown in Listing 1 (with annotations). A file containing these adddions can be downloaded from wiblocks. Once boards.txt is modified select wiblocks 328 at 12MHz from the Tools->Board menu.

5.2 Downloading a program

The ZB2 must be rebooted to start the program download. This can be done by pressing the reset button S1 immediately before starting the download. If your USB port is configured to set RTS on close then the reset will occur automatically.

- 1 wiblocks_328.name=wiblocks 328 at 12MHz
 2 wiblocks_328.upload.protocol=stk500
 3 wiblocks_328.upload.maximum_size=30720
 4 wiblocks_328.upload.speed=19200
 5 wiblocks_328.bootloader.low_fuses=0xff
 6 wiblocks_328.bootloader.high_fuses=0xdd
 7 wiblocks_328.bootloader.extended_fuses=0x00
 wiblocks_328.bootloader.path=stmage228
- s wiblocks_328.bootloader.path=atmega328
 s wiblocks_328.bootloader.file=wiblocks_328.hex
- ⁹ wiblocks_328.bootloader.unlock_bits=0x3F
- ¹⁰ wiblocks_328. bootloader. lock_bits=0x0F
- $\frac{11}{11} \text{ wiblocks}_{228} \text{ bootloader}_{10} \text{ lock}_{11} \text{ bootloader}_{10} \text$
- ¹² wiblocks_328.build.mcu=atmega328p
- ¹³ wiblocks_328. build. $\mathbf{f_cpu} = 12000000L$
- 14 wiblocks_328.build.core=arduino

wiblock[®] ZB2 References

- Atmel. (2009a). 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash., 323. (Retrieved March 14, 2009, from http://www.atmel.com/dyn/resources/prod_documents/doc8025.pdf)
- Atmel. (2009b). 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash., 314. (Retrieved March 14, 2009, from http://www.atmel.com/dyn/resources/prod_documents/doc8025.pdf)
- Atmel. (2009c). 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash. (Retrieved March 14, 2009, from http://www.atmel.com/dyn/resources/prod_documents/doc8025.pdf)
- Igoe, T. (2007). Making Things Talk. Sebastopol, CA, USA: O'Reilly Media.
- Maxim. (2009a, July). DS1337 I2C Serial Real-Time Clock. , 2-3. (Retrieved September 30, 2009, from http://datasheets.maxim-ic.com/en/ds/DS1337-DS1337C.pdf)
- Maxim. (2009b, July). DS1337 I2C Serial Real-Time Clock.
- (Retrieved September 30, 2009, from http://datasheets.maxim-ic.com/en/ds/DS1337-DS1337C.pdf)
- MaxStream. (2005a). XBee/XBee-PRO OEM RF Module Antenna Considerations. , 3. (Retrieved August 12, 2008, from http://ftpl.digi.com/support/images/XST-AN019a_XBeeAntennas.pdf)
- MaxStream. (2005b). XBee/XBee-PRO OEM RF Module Antenna Considerations. (Retrieved August 12, 2008, from http://ftpl.digi.com/support/images/XST-AN019a_XBeeAntennas.pdf)
- MaxStream. (2007). XBee/XBee-PRO Product Manual v1.xAx 802.15.4 Protocol. (Retrieved April 30, 2008, from http://ftp1.digi.com/support/documentation/manual_xb_oem-rf-modules _802.15.4_v1.xAx.pdf)
- USB-IF, I. (2000a, April 27). Universal Serial Bus Specification. , 171-177.
- USB-IF, I. (2000b, April 27). Universal Serial Bus Specification.

Table 4: Bill of Materials

Kit: ZB2-R0-KIT2

Qty	Reference	Part Number	Description
1	B21	CON_BATKeystone_500	connector, battery, CR1220
5	C1, C2, C3, C14, C23	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, $0.1\mathrm{uF},10\%,50\mathrm{V},\mathrm{X7R}$
2	C5, C9	CAPR-20P0-100V-NPO-5T00	capacitor, ceramic, 20pF
2	C10, C11	CAPPR_Nichicon_UPW1E100MDD	capacitor, Nichicon UPW1E100MDD
1	C24	TDK_C3216X7R1H105K	1 /
1	D1	DIOA-1N4148	diode, 1N4148
1	D3	DIO_On-Semi_MBR1545CTG	diode, dual, On-Semi MBR1545CTG
2	D21, D22	DIOA-BAT41	diode, BAT41
3	D4, D23, D24	LEDR-1T-GRN-2M00	LED, T1, Green
1	F1	FUSE_Littelfuse_1812L050PR	fuse, 0.5A 1812
1	J1	HDR_RA_BR-20X2-100M	header, RA, 20x2, 100mils
1	J3	HDR_BR-3X1-100M	header, 3x1, 100mils
1	J5	HDR_BR-6X1-100M	header, 6x1, 100mils
1	J6	HDR_BR-3X2-100M	header, 3x2, 100mils
1	J10	CON_CUI-PJ-202AH	power jack, 2.1mm
1	L1	INDA-10UH-130M-10T0	inductor, $10uH$, 10%
4	R1, R3, R22,	RES-10K0-0W125-1T00	resistor, $10K$, $1/8W$, 1%
	R23		
3	R2, R25, R26	RES-374R-0W125-1T00	resistor, 374 Ohm, $1/8W$, 1%
1	S1	$SW_Panasonic_EVQ$ -PAE04M	pushbutton
1	S2	$SWCK_JS202011CQN$	switch, CK JS202011CQN
1	U1	ICATMEL_ATmega328-20PU	$\mathrm{ATmega328\text{-}20PU},\ \mathrm{32K}/\mathrm{1K}/\mathrm{2K},\ \mathrm{20MHz}$
1	U4	VREG_On-Semi_MC33269T-3.3G	voltage regulator, 3.3V, 800mA, TO-220
1	U23	IC_RTCMaxim_DS1337+	IC, RTC, $DS1337+$
1	X1	XTAL-12M-20P-HC49US	crystal, 12MHz, 20pF, HC49US
1	X21	XTAL-32K768-6P-2X6	crystal, 32.768KHz, 6pF, 2x6mm package
1		DIP-8P-300M	DIP Socket, 8 Pin, 300mil centers
1		DIP-28P-300M	DIP Socket, 28 Pin, 300mil centers
1		JMP_Adamtech_MSBHG	Shunt with handle
1		CON_BATKeystone_2990	connector, battery, negative-contact, CR1220
1		CON_BATKeystone_3001	connector, battery, CR1220
2		HDRF-10x1-2MM	header, recptacle, $10x1$, $2mm$
1		wiblock_ZB2-R0-PCB	

wiblock® ZB2 10 Table 5: Component List

_

Reference	Part Number	Description
B21	CON_BATKeystone_500	connector, battery, CR1220
C1	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1 uF, 10% , 50 V, X7R
C2	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1uF, 10%, 50V, X7R
C3	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1uF, 10%, 50V, X7R
C14	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1uF, 10%, 50V, X7R
C23	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1uF, 10%, 50V, X7R
C5	CAPR-20P0-100V-NPO-5T00	capacitor, ceramic, 20pF
C9	CAPR-20P0-100V-NPO-5T00	capacitor, ceramic, 20pF
C10	CAPPR_Nichicon_UPW1E100MDD	capacitor, Nichicon UPW1E100MDD
C11	CAPPR_Nichicon_UPW1E100MDD	capacitor, Nichicon UPW1E100MDD
C24	TDK_C3216X7R1H105K	
D1	DIOA-1N4148	diode, 1N4148
D3	DIO_On-Semi_MBR1545CTG	diode, dual, On-Semi MBR1545CTG
D21	DIOA-BAT41	diode, BAT41
D22	DIOA-BAT41	diode, BAT41
D4	LEDR-1T-GRN-2M00	LED, T1, Green
D23	LEDR-1T-GRN-2M00	LED, T1, Green
D24	LEDR-1T-GRN-2M00	LED, T1, Green
F1	FUSELittelfuse_1812L050PR	fuse, 0.5A 1812
J1	HDR_RA_BR-20X2-100M	header, RA, 20x2, 100mils
J3	HDR_BR-3X1-100M	header, 3x1, 100mils
J5	HDR_BR-6X1-100M	header, 6x1, 100mils
J6	HDR_BR-3X2-100M	header, 3x2, 100mils
J10	CON_CUI-PJ-202AH	power jack, 2.1mm
L1	INDA-10UH-130M-10T0	inductor, 10uH, 10%
R1	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1%
R3	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1%
R22	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1/6
R23	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1/6
R2	RES-374R-0W125-1T00	resistor, 374 Ohm, 1/8W, 1%
R25		resistor, 374 Ohm, 1/8W, 1%
R26	RES-374R-0W125-1T00 RES-374R-0W125-1T00	
R20 S1		resistor, 374 Ohm, 1/8W, 1% pushbutton
	SW_Panasonic_EVQ-PAE04M	switch, CK JS202011CQN
S2	SWCK_JS202011CQN	· ·
U1	IC_ATMEL_ATmega328-20PU	ATmega328-20PU, 32K/1K/2K, 20MHz
U4	VREG_On-Semi_MC33269T-3.3G	voltage regulator, 3.3V, 800mA, TO-220
U23	IC_RTC_Maxim_DS1337+	IC, RTC, DS1337+
X1 Vo1	XTAL-12M-20P-HC49US	crystal, 12MHz, 20pF, HC49US
X21	XTAL-32K768-6P-2X6	crystal, 32.768KHz, 6pF, 2x6mm package
	DIP-8P-300M	DIP Socket, 8 Pin, 300mil centers
	DIP-28P-300M	DIP Socket, 28 Pin, 300mil centers
	JMP_Adamtech_MSBHG	Shunt with handle
	CON_BATKeystone_2990	connector, battery, negative-contact, CR1220
	CON_BATKeystone_3001	connector, battery, CR1220
	HDRF-10x1-2MM	header, recptacle, $10x1$, $2mm$
	wiblock_ZB2-R0-PCB	

Kit: ZB2-R0-KIT2

wiblock[®] ZB2 Table 6: Bill of Materials

Kit: ZB2-R0-KIT3

_

Qty	Reference	Part Number	Description
1	B21	CON_BATKeystone_500	connector, battery, CR1220
5	C1, C2, C3,	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1uF, 10%, 50V, X7R
0	C14, C23	01111-0010-50V-X11-100M	capacitor, ceraine, 0.101, 1070, 00V, X/10
2	C14, C23 C5, C9	CAPR-20P0-100V-NPO-5T00	capacitor, ceramic, 20pF
$\frac{2}{2}$	C10, C11	CAPPR_Nichicon_UPW1E100MDD	capacitor, Nichicon UPW1E100MDD
$\frac{2}{2}$	C10, C11 C24, C33	TDK_C3216X7R1H105K	capacitor, Memcon Of WIE100MDD
1	C31	TDK_C3216X7R1C106K	
1	C31 C32	TDK_FK28X5R1A104K	
3	C52 C51, C56, C57	CAPC-0U1-50V-X7R-0805	capacitor, ceramic, 0.1uF, 16V, 0805
1	D1	DIOA-1N4148	diode, 1N4148
1	D3	DIO_On-Semi_MBR1545CTG	diode, dual, On-Semi MBR1545CTG
2	D3 D21, D22	DIOA-BAT41	diode, BAT41
$\frac{2}{3}$	D21, D22 D4, D23, D24	LEDR-1T-GRN-2M00	LED, T1, Green
1	F1	FUSE_Littelfuse_1812L050PR	fuse, 0.5A 1812
1	J1	HDR_RA_BR-20X2-100M	header, RA, 20x2, 100mils
1	J2	wiblock_HDR_RA_BR-7x2-100M	header, ItA, 20x2, 100hills
1	J3	HDR_BR-3X1-100M	header, 3x1, 100mils
1	J6	HDR_BR-3X2-100M	header, 3x2, 100mils
1	J10	CON_CUI-PJ-202AH	power jack, 2.1mm
1	J60	Molex_67503-1020	power Jack, 2.11111
1	L1	INDA-10UH-130M-10T0	inductor, 10 uH, 10%
4	R1, R3, R22,	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1%
т	R23	1010 000120 1100	10315101, 1012, 170
3	R2, R25, R26	RES-374R-0W125-1T00	resistor, 374 Ohm, 1/8W, 1%
2	R58, R62	RES-10K0-0805-1T00	resistor, 10K, 0805. 1%
1	R59	RES-4K70-0805-1T00	resistor, 4.7K, 0805, 1%
1	S1	SW_Panasonic_EVQ-PAE04M	pushbutton
1	S2	SWCK_JS202011CQN	switch, CK JS202011CQN
1	U1	ICATMEL_ATmega328-20PU	ATmega328-20PU, 32K/1K/2K, 20MHz
1	U4	VREG_On-Semi_MC33269T-3.3G	voltage regulator, 3.3V, 800mA, TO-220
1	U10	FTDLFT232RL	
1	U23	IC_RTC_Maxim_DS1337+	IC, RTC, DS1337+
1	U31	ON-Semi_CAT3200TDI	
1	U55	TLSN65220DBV	
1	X1	XTAL-12M-20P-HC49US	crystal, 12MHz, 20pF, HC49US
1	X21	XTAL-32K768-6P-2X6	crystal, 32.768KHz, 6pF, 2x6mm package
1		DIP-8P-300M	DIP Socket, 8 Pin, 300mil centers
1		DIP-28P-300M	DIP Socket, 28 Pin, 300mil centers
1		$JMP_Adamtech_MSBHG$	Shunt with handle
1		CON_BATKeystone_2990	connector, battery, negative-contact, CR1220
1		CON_BATKeystone_3001	connector, battery, CR1220
2		HDRF-10x1-2MM	header, recptacle, 10x1, 2mm
1		wiblock_ZB2-R0-PCB	
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ \end{array} $	U23 U31 U55 X1	IC_RTCMaxim_DS1337+ ON-Semi_CAT3200TDI TI_SN65220DBV XTAL-12M-20P-HC49US XTAL-32K768-6P-2X6 DIP-8P-300M DIP-28P-300M JMPAdamtech_MSBHG CON_BATKeystone_2990 CON_BATKeystone_3001 HDRF-10x1-2MM	crystal, 12MHz, 20pF, HC49US crystal, 32.768KHz, 6pF, 2x6mm package DIP Socket, 8 Pin, 300mil centers DIP Socket, 28 Pin, 300mil centers Shunt with handle connector, battery, negative-contact, CR1220 connector, battery, CR1220

wiblock® ZB2 PEL Table 7: Component List

Kit: ZB2-R0-KIT3

Reference	Part Number	Description
B21	CON_BATKeystone_500	connector, battery, CR1220
C1	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1 uF, 10% , 50 V, X7R
C2	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1 uF, 10% , 50 V, X7R
C3	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1 uF, 10% , 50 V, X7R
C14	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1uF, 10%, 50V, X7R
C23	CAPR-0U10-50V-X7R-100M	capacitor, ceramic, 0.1uF, 10%, 50V, X7R
C5	CAPR-20P0-100V-NPO-5T00	capacitor, ceramic, 20pF
C9	CAPR-20P0-100V-NPO-5T00	capacitor, ceramic, 20pF
C10	CAPPRNichicon_UPW1E100MDD	capacitor, Nichicon UPW1E100MDD
C11	CAPPRNichicon_UPW1E100MDD	capacitor, Nichicon UPW1E100MDD
C24	TDK_C3216X7R1H105K	
C33	TDK_C3216X7R1H105K	
C31	TDK_C3216X7R1C106K	
C32	TDK_FK28X5R1A104K	
C51	CAPC-0U1-50V-X7R-0805	capacitor, ceramic, 0.1uF, 16V, 0805
C56	CAPC-0U1-50V-X7R-0805	capacitor, ceramic, 0.1uF, 16V, 0805
C57	CAPC-0U1-50V-X7R-0805	capacitor, ceramic, 0.1uF, 16V, 0805
D1	DIOA-1N4148	diode, 1N4148
D3	DIO_On-Semi_MBR1545CTG	diode, dual, On-Semi MBR1545CTG
D21	DIOA-BAT41	diode, BAT41
D22	DIOA-BAT41	diode, BAT41
D4	LEDR-1T-GRN-2M00	LED, T1, Green
D23	LEDR-1T-GRN-2M00	LED, T1, Green
D24	LEDR-1T-GRN-2M00	LED, T1, Green
F1	FUSE_Littelfuse_1812L050PR	fuse, 0.5A 1812
J1	HDR_RA_BR-20X2-100M	header, RA, 20x2, 100mils
J2	wiblock_HDR_RA_BR-7x2-100M	
J3	HDR_BR-3X1-100M	header, 3x1, 100mils
J6	HDR_BR-3X2-100M	header, 3x2, 100mils
J10	CONCUI-PJ-202AH	power jack, 2.1mm
J60	Molex_67503-1020	
L1	INDA-10UH-130M-10T0	inductor, $10uH$, 10%
$\mathbf{R1}$	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1%
$\mathbf{R3}$	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1%
R22	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1%
R23	RES-10K0-0W125-1T00	resistor, 10K, 1/8W, 1%
R2	RES-374R-0W125-1T00	resistor, 374 Ohm, 1/8W, 1%
R25	RES-374R-0W125-1T00	resistor, 374 Ohm, 1/8W, 1%
R26	RES-374R-0W125-1T00	resistor, 374 Ohm, 1/8W, 1%
R58	RES-10K0-0805-1T00	resistor, 10K, 0805. 1%
R62	RES-10K0-0805-1T00	resistor, 10K, 0805. 1%
R59	RES-4K70-0805-1T00	resistor, 4.7K, 0805, 1%
S1	SW_Panasonic_EVQ-PAE04M	pushbutton
S2	SWCK_JS202011CQN	switch, CK JS202011CQN
U1	ICATMEL_ATmega328-20PU	ATmega328-20PU, 32K/1K/2K, 20MHz
U4	VREG_On-Semi_MC33269T-3.3G	voltage regulator, 3.3V, 800mA, TO-220
U10	FTDI_FT232RL	G
U23	IC_RTC_Maxim_DS1337+	IC, RTC, DS1337+
U31	ON-Semi_CAT3200TDI	
U55	TLSN65220DBV	

WIBOCK® ZB2 PELIMINARY 13

Reference	Part Number	Description
X1	XTAL-12M-20P-HC49US	crystal, 12MHz, 20pF, HC49US
X21	XTAL-32K768-6P-2X6	crystal, 32.768KHz, 6pF, 2x6mm package
	DIP-8P-300M	DIP Socket, 8 Pin, 300mil centers
	DIP-28P-300M	DIP Socket, 28 Pin, 300mil centers
	JMPAdamtech_MSBHG	Shunt with handle
	CON_BATKeystone_2990	connector, battery, negative-contact, CR1220
	CON_BATKeystone_3001	connector, battery, CR1220
	HDRF-10x1-2MM	header, recptacle, 10x1, 2mm
	wiblock_ZB2-R0-PCB	

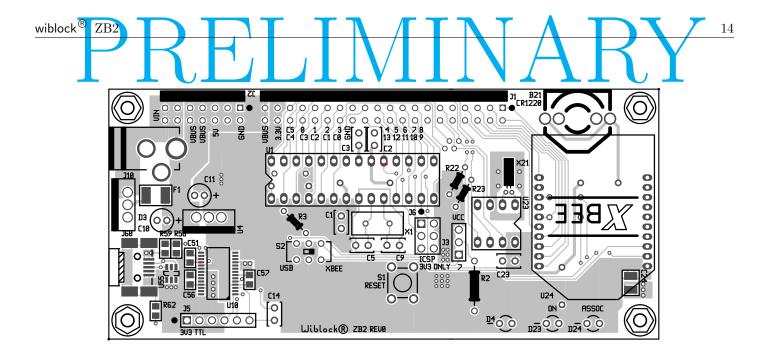


Figure 1: ZB2 Top Side Assembly Drawing (Rev 0)

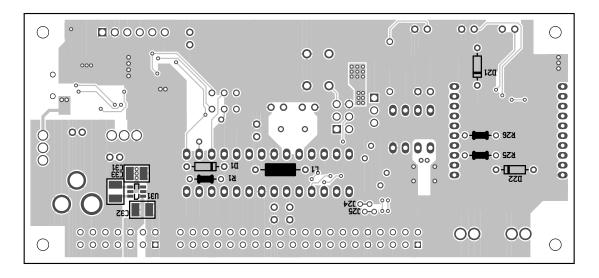


Figure 2: ZB2 Bottom Side Assembly Drawing (Rev 0)

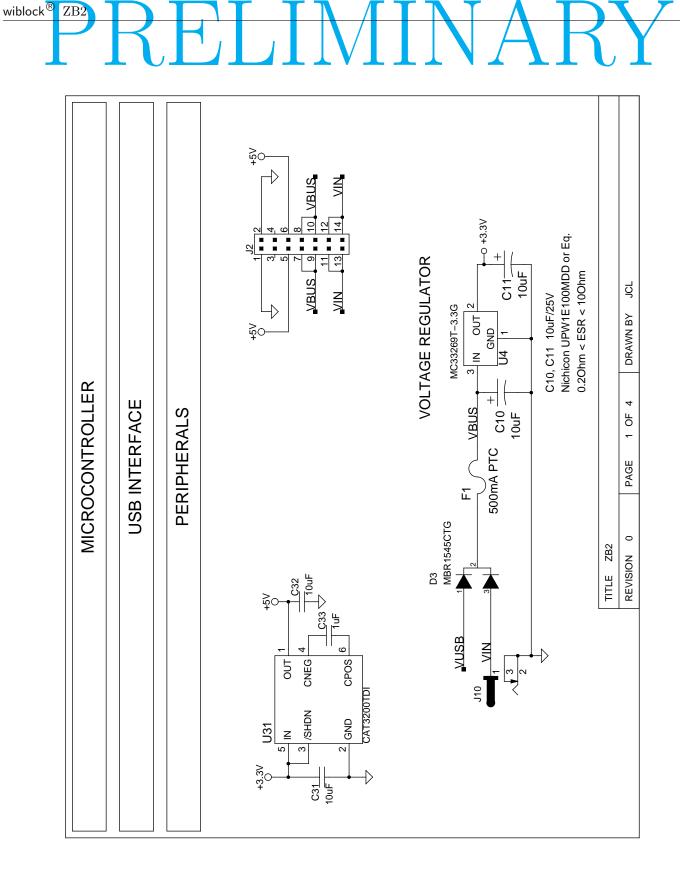


Figure 3: ZB2 (Rev 0)

15

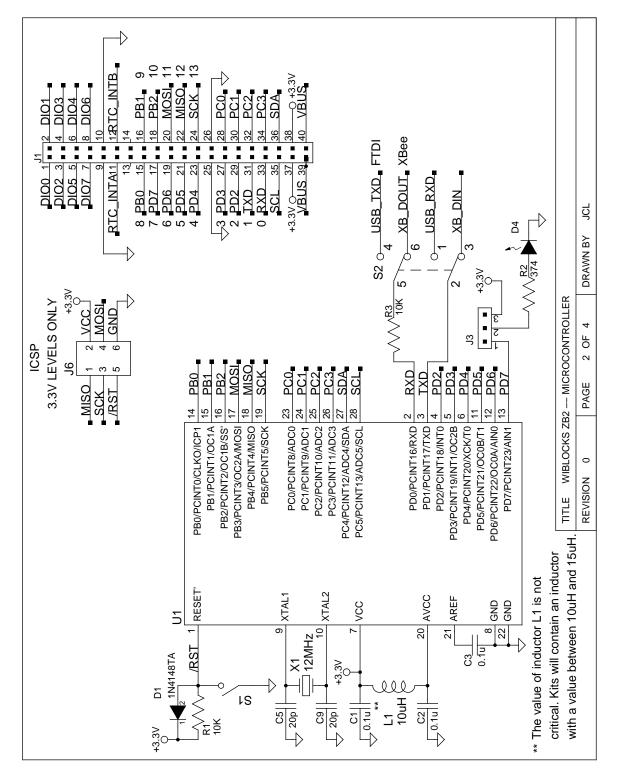


Figure 4: ZB2 (Rev 0)

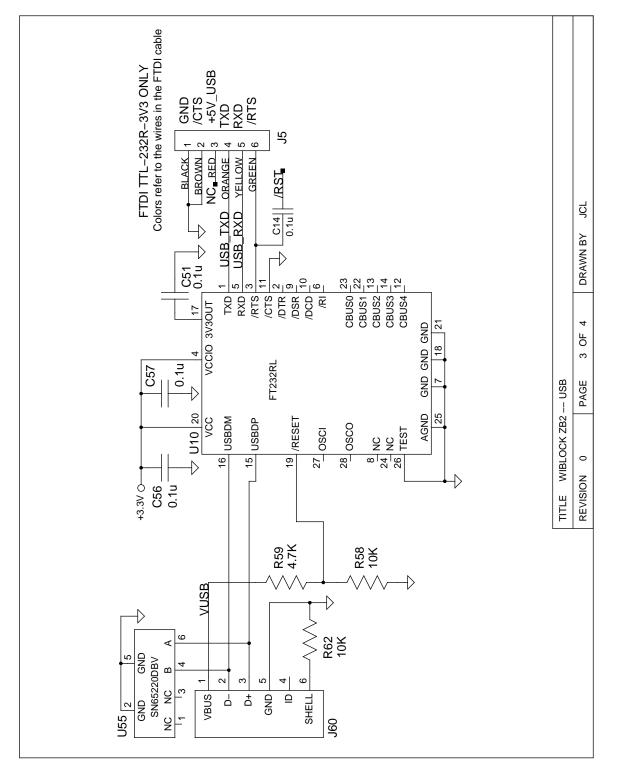


Figure 5: ZB2 (Rev 0)

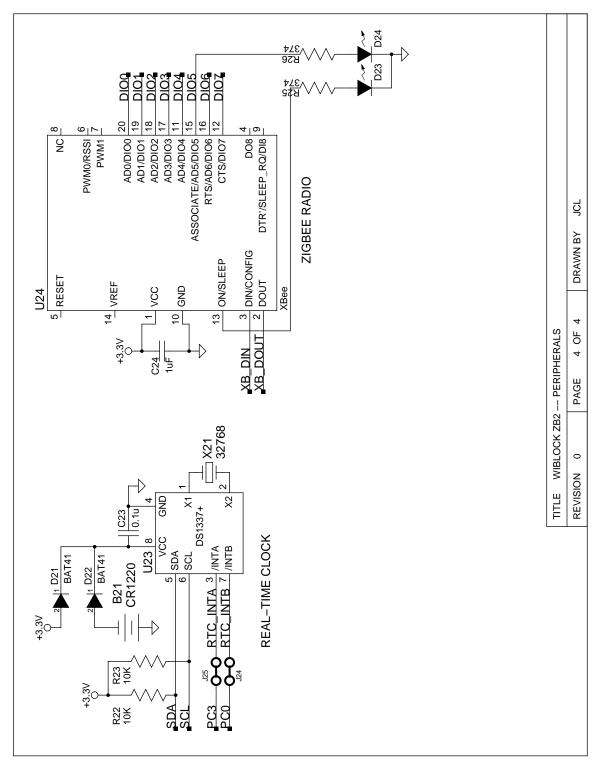


Figure 6: ZB2 (Rev 0)

19-4652; 7/09

BALLAS SEMICONDUCTOR

www.maxim-ic.com

GENERAL DESCRIPTION

The DS1337 serial real-time clock is a low-power clock/calendar with two programmable time-of-day alarms and a programmable square-wave output. Address and data are transferred serially through an I²C bus. The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM indicator.

The device is fully accessible through the serial interface while $V_{\rm CC}$ is between 1.8V and 5.5V. I^2C operation is not guaranteed below 1.8V. Timekeeping operation is maintained with $V_{\rm CC}$ as low as 1.3V.

APPLICATIONS

Handhelds (GPS, POS Terminal, MP3 Player)

Consumer Electronics (Set-Top Box, VCR/Digital Recording)

Office Equipment (Fax/Printer, Copier)

Medical (Glucometer, Medicine Dispenser)

Telecommunications (Router, Switch, Server)

Other (Utility Meter, Vending Machine, Thermostat, Modem)

TYPICAL OPERATING CIRCUIT

DS1337 I²C Serial Real-Time Clock

FEATURES

- Real-Time Clock (RTC) Counts Seconds, Minutes, Hours, Day, Date, Month, and Year with Leap-Year Compensation Valid Up to 2100
- Available in a Surface-Mount Package with an Integrated Crystal (DS1337C)
- I²C Serial Interface
- Two Time-of-Day Alarms
- Oscillator Stop Flag
- Programmable Square-Wave Output Defaults to 32kHz on Power-Up
- Available in 8-Pin DIP. SO. or uSOP
- -40°C to +85°C Operating Temperature Range

ORDERING INFORMATION

PART	TEMP RANGE	TEMP RANGE PIN-PACKAGE	
DS1337+	-40°C to +85°C	8 DIP (300 mils)	DS1337
DS1337S+	-40°C to +85°C	8 SO (150 mils)	DS1337
DS1337U+	-40°C to +85°C	8 μSOP	1337
DS1337C#	-40°C to +85°C	16 SO (300 mils)	DS1337C

+ Denotes a lead(Pb)-free/RoHS-compliant device.

Denotes a RoHS-compliant device that may include lead that is exempt under the RoHS requirements. The lead finish is JESD97 category e3, and is compatible with both lead-based and lead-free soldering processes.

A "+" anywhere on the top mark denotes a lead-free device. A
 "#" denotes a RoHS-compliant device.

Pin Configurations appear at end of data sheet.

Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, go to: <u>www.maxim-ic.com/errata</u>.

DS1337 I²C Serial Real-Time Clock

ABSOLUTE MAXIMUM RATINGS

 $(T = 40^{\circ}C + 0.195^{\circ}C)$

Voltage Range on Any Pin Relative to Ground	-0.3V to +6.0V
Operating Temperature Range (Noncondensing)	
Storage Temperature Range	55°C to +125°C
Soldering Temperature	See IPC/JEDEC J-STD-020 Specification

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

$(1_A = -40^{\circ}C \text{ to } +85^{\circ}C)$	1	-	1			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
	V _{cc}	Full operation	1.8	3.3	5.5	V
V _{CC} Supply Voltage	V _{CCT}	Timekeeping (Note 5)	1.3		1.8	V
Logic 1	V _{IH}	SCL, SDA	$0.7 \text{ x V}_{\text{CC}}$		V _{CC} + 0.3	v
		ĪNTĀ, SQW/ĪNTB			5.5	v
Logic 0	V _{IL}		-0.3		+0.3 x V_{CC}	V

DC ELECTRICAL CHARACTERISTICS—Full Operation

$(V_{cc} = 1.8V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.)$ (Note 1)	$(V_{CC} =$	1.8V to 5.5V	$, T_{A} = -40^{\circ}C$ to	+85°C.) (Note 1)
---	-------------	--------------	-----------------------------	------------------

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Leakage	ILI	(Note 2)	-1		+1	μA
I/O Leakage	I _{LO}	(Note 3)	-1		+1	μA
Logic 0 Output (V _{OL} = 0.4V)	I _{OL}	(Note 3)			3	mA
Active Supply Current	I _{CCA}	(Note 4)			150	μA
Standby Current	I _{CCS}	(Notes 5, 6)			1.5	μA

DC ELECTRICAL CHARACTERISTICS--Timekeeping

(V_{cc} = 1.3V to 1.8V, T_A = -40°C to +85°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Timekeeping Current (Oscillator Enabled)	I _{CCTOSC}	(Notes 5, 7, 8, 9)		425	600	nA
Data-Retention Current (Oscillator Disabled)	I _{CCTDDR}	(Notes 5, 9)			100	nA

DS1337 I²C Serial Real-Time Clock

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 1.8V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
	4	Fast mode	100		400		
SCL Clock Frequency	f _{SCL}	Standard mode	0		100	kHz	
Bus Free Time Between a		Fast mode	1.3				
STOP and START Condition	t _{BUF}	Standard mode	4.7			μs	
Hold Time (Repeated)		Fast mode	0.6				
START Condition (Note 10)	t _{hd:sta}	Standard mode	4.0			μS	
LOW Period of SCL Clock	+	Fast mode	1.3				
LOW PERIOD OF SCL CIOCK	t _{LOW}	Standard mode	4.7			μs	
LICI Deried of CCL Cleak		Fast mode	0.6				
HIGH Period of SCL Clock	t _{HIGH}	Standard mode	4.0			μS	
Setup Time for a Repeated		Fast mode	0.6				
START Condition	t _{su:sta}	Standard mode	4.7			μs	
Data Hold Time	+	Fast mode	0		0.9		
(Notes 11, 12)	t _{HD:DAT}	Standard mode	0			μS	
Data Setup Time (Note 13)	t _{su:DAT}	Fast mode	100			ns	
	SU:DAT	Standard mode	250			115	
Rise Time of Both SDA and	t _R	Fast mode	20 + 0.1C _B		300	ns	
SCL Signals (Note 14)	чк	Standard mode	20 + 0.1C _B		1000	115	
Fall Time of Both SDA and	t⊨	Fast mode	20 + 0.1C _B		300	ns	
SCL Signals (Note 14)	ιF	Standard mode	20 + 0.1C _B		300	115	
Setup Time for STOP	+	Fast mode	0.6				
Condition	t _{su:sto}	Standard mode	4.0			μs	
Capacitive Load for Each Bus Line	C _B	(Note 14)			400	pF	
I/O Capacitance (SDA, SCL)	C _{I/O}	(Note 15)			10	pF	
Oscillator Stop Flag (OSF) Delay	t _{OSF}			100		ms	

Note 1: Limits at -40°C are guaranteed by design and are not production tested.

Note 2: SCL only.

Note 3: SDA, INTA, and SQW/INTB.

Note 4: I_{CCA}—SCL clocking at max frequency = 400kHz, V_{IL} = 0.0V, V_{IH} = V_{CC}.

Note 5: Specified with the I²C bus inactive, $V_{IL} = 0.0V$, $V_{IH} = V_{CC}$.

Note 6: SQW enabled.

Note 7: Specified with the SQW function disabled by setting INTCN = 1.

Note 8: Using recommended crystal on X1 and X2.

Note 9: The device is fully accessible when $1.8 \le V_{CC} \le 5.5V$. Time and date are maintained when $1.3V \le V_{CC} \le 1.8V$.

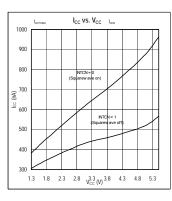
Note 10: After this period, the first clock pulse is generated

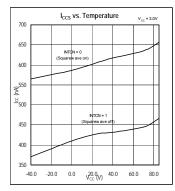
Note 11: A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V_{IHMIN} of the SCL signal) to bridge the undefined region of the falling edge of SCL.

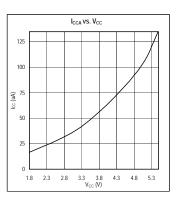
Note 14: C_B—total capacitance of one bus line in pF.

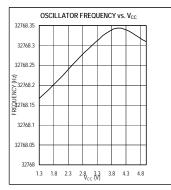
Note 15: Guaranteed by design. Not production tested.

Note 12: The maximum $t_{HD:DAT}$ need only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.

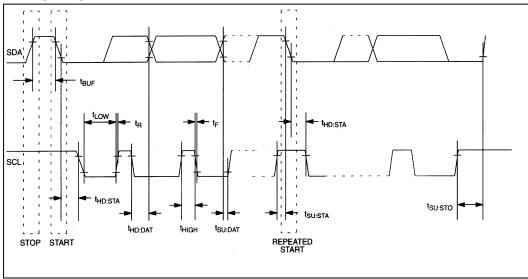

Note 13: A fast-mode device can be used in a standard-mode system, but the requirement $t_{SU:DAT} \ge to 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{R max} + t_{SU:DAT} = 1000 + 250 = 1250$ ns before the SCL line is released.


DS1337 I²C Serial Real-Time Clock


Note 16: The parameter t_{OSF} is the period of time that the oscillator must be stopped for the OSF bit to be set over the voltage range of $V_{CC(MIN)} \le V_{CC} \le V_{CC(MAX)}$.


TYPICAL OPERATING CHARACTERISTICS

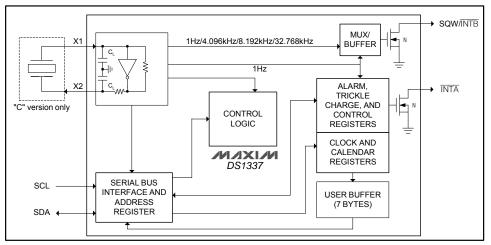
(V_{CC} = 3.3V, T_A = +25°C, unless otherwise noted.)



4 of 16

DS1337 I²C Serial Real-Time Clock

F	PIN		
8	16	NAME	FUNCTION
1	_	X1	Connections for a Standard 32.768kHz Quartz Crystal. The internal oscillator circuitry is designed for operation with a crystal having a specified load capacitance (C_L) of 6pF. For more information about crystal selection and crystal layout considerations, refer to <i>Application Note 58: Crystal</i>
2	_ X2		<i>Considerations with Dallas Real-Time Clocks.</i> An external 32.768kHz oscillator can also drive the DS1337. In this configuration, the X1 pin is connected to the external oscillator signal and the X2 pin is floated.
3	14	ĪNTĀ	Interrupt Output. When enabled, $\overline{\rm INTA}$ is asserted low when the time/day/date matches the values set in the alarm registers. This pin is an open-drain output and requires an external pullup resistor. The pull up voltage may be up to 5.5V, regardless of the voltage on V _{cc} . If not used, this pin may be left floating.
4	15	GND	Ground. DC power is provided to the device on this pin.
5	16	SDA	Serial Data Input/Output. SDA is the input/output pin for the I ² C serial interface. The SDA pin is open-drain output and requires an external pullup resistor.
6	1	SCL	Serial Clock Input. SCL is used to synchronize data movement on the serial interface.
7	2	SQW/INTB	Square-Wave/Interrupt Output. Programmable square-wave or interrupt output signal. It is an open-drain output and requires an external pullup resistor. The pull up voltage may be up to 5.5V, regardless of the voltage on V _{CC} . If not used, this pin may be left floating.
8	3	V _{cc}	DC Power. DC power is provided to the device on this pin.
_	4–13	N.C.	No Connect. These pins are not connected internally, but must be grounded for proper operation.


TIMING DIAGRAM

⁵ of 16

DS1337 I²C Serial Real-Time Clock

BLOCK DIAGRAM

DETAILED DESCRIPTION

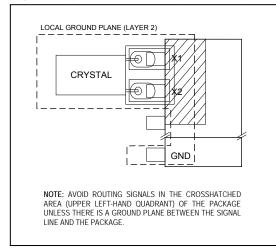
The *Block Diagram* shows the main elements of the DS1337. As shown, communications to and from the DS1337 occur serially over an l^2C bus. The DS1337 operates as a slave device on the serial bus. Access is obtained by implementing a START condition and providing a device identification code, followed by data. Subsequent registers can be accessed sequentially until a STOP condition is executed. The device is fully accessible through the l^2C interface whenever V_{CC} is between 5.5V and 1.8V. l^2C operation is not guaranteed when V_{CC} is below 1.8V. The DS1337 maintains the time and date when V_{CC} is as low as 1.3V.

OSCILLATOR CIRCUIT

The DS1337 uses an external 32.768kHz crystal. The oscillator circuit does not require any external resistors or capacitors to operate. <u>Table 1</u> specifies several crystal parameters for the external crystal. The *Block Diagram* shows a functional schematic of the oscillator circuit. The startup time is usually less than 1 second when using a crystal with the specified characteristics.

Table 1. Crystal Specifications*

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Nominal Frequency	fo		32.768		kHz
Series Resistance	ESR			50	kΩ
Load Capacitance	CL		6		pF


*The crystal, traces, and crystal input pins should be isolated from RF generating signals. Refer to Application Note 58: Crystal Considerations for Dallas Real-Time Clocks for additional specifications.

DS1337 I²C Serial Real-Time Clock

CLOCK ACCURACY

The accuracy of the clock is dependent upon the accuracy of the crystal and the accuracy of the match between the capacitive load of the oscillator circuit and the capacitive load for which the crystal was trimmed. Crystal frequency drift caused by temperature shifts creates additional error. External circuit noise coupled into the oscillator circuit and the clock running fast. Figure 1 shows a typical PC board layout for isolating the crystal and oscillator from noise. Refer to Application Note 58: Crystal Considerations with Dallas Real-Time Clocks for detailed information.

DS1337C ONLY

The DS1337C integrates a standard 32,768Hz crystal in the package. Typical accuracy at nominal V_{CC} and +25°C is approximately +10ppm. Refer to *Application Note 58* for information about crystal accuracy vs. temperature.

OPERATING MODES

The amount of current consumed by the DS1337 is determined, in part, by the I²C interface and oscillator operation. The following table shows the relationship between the operating mode and the corresponding I_{CC} parameter.

Operating Mode	V _{cc}	Power
I ² C Interface Active	$1.8V \le V_{CC} \le 5.5V$	I _{CC} Active (I _{CCA})
I ² C Interface Inactive	$1.8V \le V_{CC} \le 5.5V$	I _{CC} Standby (I _{CCS})
I ² C Interface Inactive	$1.3V \le V_{CC} \le 1.8V$	Timekeeping (I _{CCTOSC})
I ² C Interface Inactive		Data Retention
Oscillator Disabled	$1.3V \le V_{CC} \le 1.8V$	(I _{CCTDDR})

DS1337 I²C Serial Real-Time Clock

ADDRESS MAP

<u>Table 2</u> shows the address map for the DS1337 registers. During a multibyte access, when the address pointer reaches the end of the register space (0Fh) it wraps around to location 00h. On an I²C START, STOP, or address pointer incrementing to location 00h, the current time is transferred to a second set of registers. The time information is read from these secondary registers, while the clock may continue to run. This eliminates the need to re-read the registers in case of an update of the main registers during a read.

ADDRESS	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	FUNCTION	RANGE
00H	0		10 Seconds	5	Seconds			Seconds	00–59	
01H	0	10 Minutes				Min	utes		Minutes	00–59
02H	0	12 /24	AM/PM	10 Hour	Hour			Hours	1–12 +AM/PN 00–23	
03H	0	0	0	0	0		Day		Day	1–7
04H	0	0	10 [Date		Da	ate		Date	01–31
05H	Century	0	0	10 Month		Мо	nth		Month/ Century	01–12 + Century
06H		10 `	Year			Ye	ar		Year	00–99
07H	A1M1	10 Seconds			Seconds			Alarm 1 Seconds	00–59	
08H	A1M2		10 Minutes			Minutes			Alarm 1 Minutes	00–59
09H	A1M3	12 /24	AM/PM 10 Hour	10 Hour		Но	our		Alarm 1 Hours	1–12 + AM/PM 00–23
0AH	A1M4	DY/DT	10.0	Date	Day		Alarm 1 Day	1–7		
UAH	A TIVI4	DHDI	101	Jale		Da	ate		Alarm 1 Date	01–31
0BH	A2M2		10 Minutes			Min	utes		Alarm 2 Minutes	00–59
0CH	A2M3	12/24	AM/PM 10 Hour	10 Hour		Но	our		Alarm 2 Hours	1–12 + AM/PM 00–23
0DH	A2M4	DY/DT	10.1	Date		Da	ау		Alarm 2 Day	1–7
UDH	AZIVI4	וטוזט	101	Jale	Date			Alarm 2 Date	01–31	
0EH	EOSC	0	0	RS2	RS1	INTCN	A2IE	A1IE	Control	_
0FH	OSF	0	0	0	0	0	A2F	A1F	Status	_

Table 2. Timekeeper Registers

Note: Unless otherwise specified, the state of the registers is not defined when power is first applied or V_{CC} falls below the V_{OSC} .

I²C INTERFACE

The I²C interface is accessible whenever V_{cc} is at a valid level. If a microcontroller connected to the DS1337 resets while reading from the DS1337 during an I²C read, the two could become unsynchronized. The microcontroller must terminate the last byte read with a Not-Acknowledge (NACK) to properly terminate the read. When the microcontroller resets, the DS1337 I²C interface may be placed into a known state by toggling SCL until SDA is observed to be at a high level. At that point the microcontroller should pull SDA low while SCL is high, generating a START condition.

DS1337 I²C Serial Real-Time Clock

CLOCK AND CALENDAR

The time and calendar information is obtained by reading the appropriate register bytes. The RTC registers are illustrated in <u>Table 2</u>. The time and calendar are set or initialized by writing the appropriate register bytes. The contents of the time and calendar registers are in the binary-coded decimal (BCD) format.

The day-of-week register increments at midnight. Values that correspond to the day of week are user-defined but must be sequential (i.e., if 1 equals Sunday, then 2 equals Monday, and so on.). Illogical time and date entries result in undefined operation.

When reading or writing the time and date registers, secondary (user) buffers are used to prevent errors when the internal registers update. When reading the time and date registers, the user buffers are synchronized to the internal registers on any start or stop and when the register pointer rolls over to zero.

The countdown chain is reset whenever the seconds register is written. Write transfers occur on the acknowledge pulse from the device. To avoid rollover issues, once the countdown chain is reset, the remaining time and date registers must be written within 1 second. The 1Hz square-wave output, if enable, transitions high 500ms after the seconds data transfer, provided the oscillator is already running.

The DS1337 can be run in either 12-hour or 24-hour mode. Bit 6 of the hours register is defined as the 12- or 24-hour mode-select bit. When high, the 12-hour mode is selected. In the 12-hour mode, bit 5 is the $\overline{AM/PM}$ bit with logic high being PM. In the 24-hour mode, bit 5 is the second 10-hour bit (20–23 hours). All hours values, including the alarms, must be reinitialized whenever the $12/\overline{24}$ -hour mode bit is changed. The century bit (bit 7 of the month register) is toggled when the years register overflows from 99–00.

ALARMS

The DS1337 contains two time-of-day/date alarms. Alarm 1 can be set by writing to registers 07h–0Ah. Alarm 2 can be set by writing to registers 0Bh–0Dh. The alarms can be programmed (by the INTCN bit of the control register) to operate in two different modes—each alarm can drive its own separate interrupt output or both alarms can drive a common interrupt output. Bit 7 of each of the time-of-day/date alarm registers are mask bits (<u>Table 2</u>). When all of the mask bits for each alarm are logic 0, an alarm only occurs when the values in the timekeeping registers 00h–06h match the values stored in the time-of-day/date alarm registers. The alarms can also be programmed to repeat every second, minute, hour, day, or date. <u>Table 3</u> shows the possible settings. Configurations not listed in the table result in illogical operation.

The DY/ \overline{DT} bits (bit 6 of the alarm day/date registers) control whether the alarm value stored in bits 0–5 of that register reflects the day of the week or the date of the month. If DY/ \overline{DT} is written to logic 0, the alarm is the result of a match with date of the month. If DY/ \overline{DT} is written to logic 1, the alarm is the result of a match with day of the week.

When the RTC register values match alarm register settings, the corresponding alarm flag (A1F or A2F) bit is set to logic 1. The bit(s) will remain at a logic 1 until written to a logic 0 by the user. If the corresponding alarm interrupt enable (A1IE or A2IE) is also set to logic 1, the alarm condition activates one of the interrupt output (INTA or SQW/INTB) signals. The match is tested on the once-per-second update of the time and date registers.

DS1337 I²C Serial Real-Time Clock

Table	3	Alarm	Mask	Rits
Iavic	J.	πιαι ι ι ι	iviasn	DILO

	ALAF	RM 1 REGIS	TER MASK	BITS				
DY/DT		(Bľ	Т 7)		ALARM RATE			
	A1M4	A1M3	A1M2	A1M1				
Х	1	1	1	1	Alarm once per second			
Х	1	1	1	0	Alarm when seconds match			
Х	1	1	0	0	Alarm when minutes and seconds match			
Х	1	0	0	0	Alarm when hours, minutes, and seconds match			
0	0	0	0	0	Alarm when date, hours, minutes, and seconds match			
1	0	0	0	0	Alarm when day, hours, minutes, and seconds match			

DY/DT	ALARM 2	2 REGISTER M/ (BIT 7)	ASK BITS	ALARM RATE		
	A2M4	A2M3	A2M2			
Х	1	1	1	Alarm once per minute (00 seconds of every minute)		
Х	1	1	0	Alarm when minutes match		
Х	1	0	0	Alarm when hours and minutes match		
0	0	0	0	Alarm when date, hours, and minutes match		
1	0	0	0	Alarm when day, hours, and minutes match		

SPECIAL-PURPOSE REGISTERS

The DS1337 has two additional registers (control and status) that control the RTC, alarms, and square-wave output.

Control Register (0Eh)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EOSC	0	0	RS2	RS1	INTCN	A2IE	A1IE

Bit 7: Enable Oscillator (EOSC). This active-low bit when set to logic 0 starts the oscillator. When this bit is set to logic 1, the oscillator is stopped. This bit is enabled (logic 0) when power is first applied.

Bits 4 and 3: Rate Select (RS2 and RS1). These bits control the frequency of the square-wave output when the square wave has been enabled. The table below shows the square-wave frequencies that can be selected with the RS bits. These bits are both set to logic 1 (32kHz) when power is first applied.

SQW/INTB Output

INTCN	RS2	RS1	OUTPUT	
0	0	0	1Hz	Х
0	0	1	4.096kHz	Х
0	1	0	8.192kHz	Х
0	1	1	32.768kHz	Х
1	Х	Х	A2F	1

Bit 2: Interrupt Control (INTCN). This bit controls the relationship between the two alarms and the interrupt output pins. When the INTCN bit is set to logic 1, a match between the timekeeping registers and the alarm 1 registers I activates the \overline{INTA} pin (provided that the alarm is enabled) and a match between the timekeeping registers and the alarm 2 registers activates the SQW/INTB pin (provided that the alarm is enabled). When the INTCN bit is set to logic 0, a square wave is output on the SQW/INTB pin. This bit is set to logic 0 when power is first applied.

DS1337 I²C Serial Real-Time Clock

Bit 1: Alarm 2 Interrupt Enable (A2IE). When set to logic 1, this bit permits the alarm 2 flag (A2F) bit in the status register to assert \overline{INTA} (when INTCN = 0) or to assert SQW/ \overline{INTB} (when INTCN = 1). When the A2IE bit is set to logic 0, the A2F bit does not initiate an interrupt signal. The A2IE bit is disabled (logic 0) when power is first applied.

Bit 0: Alarm 1 Interrupt Enable (A1IE). When set to logic 1, this bit permits the alarm 1 flag (A1F) bit in the status register to assert INTA. When the A1IE bit is set to logic 0, the A1F bit does not initiate the INTA signal. The A1IE bit is disabled (logic 0) when power is first applied.

Status Register (0Fh)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OSF	0	0	0	0	0	A2F	A1F

Bit 7: Oscillator Stop Flag (OSF). A logic 1 in this bit indicates that the oscillator either is stopped or was stopped for some period of time and may be used to judge the validity of the clock and calendar data. This bit is set to logic 1 anytime that the oscillator stops. The following are examples of conditions that can cause the OSF bit to be set:

- 1) The first time power is applied.
- 2) The voltage present on V_{CC} is insufficient to support oscillation.
- 3) The EOSC bit is turned off.
- 4) External influences on the crystal (e.g., noise, leakage, etc.).

This bit remains at logic 1 until written to logic 0.

Bit 1: Alarm 2 Flag (A2F). A logic 1 in the alarm 2 flag bit indicates that the time matched the alarm 2 registers. This flag can be used to generate an interrupt on either INTA or SQW/INTB depending on the status of the INTCN bit in the control register. If the INTCN bit is set to logic 0 and A2F is at logic 1 (and A2IE bit is also logic 1), the INTA pin goes low. If the INTCN bit is set to logic 1 and A2F is logic 1 (and A2IE bit is also logic 1), the SQW/INTB pin goes low. A2F is cleared when written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1 leaves the value unchanged.

Bit 0: Alarm 1 Flag (A1F). A logic 1 in the alarm 1 flag bit indicates that the time matched the alarm 1 registers. If the A1IE bit is also logic 1, the INTA pin goes low. A1F is cleared when written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1 leaves the value unchanged.

DS1337 I²C Serial Real-Time Clock

I²C SERIAL DATA BUS

The DS1337 supports the l^2C bus protocol. A device that sends data onto the bus is defined as a transmitter and a device receiving data as a receiver. The device that controls the message is called a master. The devices that are controlled by the master are referred to as slaves. A master device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions must control the bus. The DS1337 operates as a slave on the l^2C bus. Within the bus specifications a standard mode (100kHz maximum clock rate) and a fast mode (400kHz maximum clock rate) are defined. The DS1337 works in both modes. Connections to the bus are made through the open-drain I/O lines SDA and SCL.

The following bus protocol has been defined (Figure 2):

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH are interpreted as control signals.

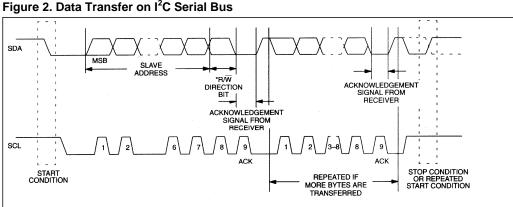
Accordingly, the following bus conditions have been defined:

Bus not busy: Both data and clock lines remain HIGH.

Start data transfer: A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines a START condition.

Stop data transfer: A change in the state of the data line, from LOW to HIGH, while the clock line is HIGH, defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.

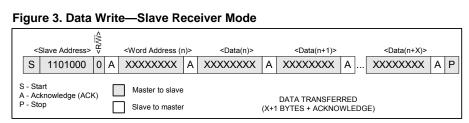

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions are not limited, and are determined by the master device. The information is transferred byte-wise and each receiver acknowledges with a ninth bit.

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse that is associated with this acknowledge bit.

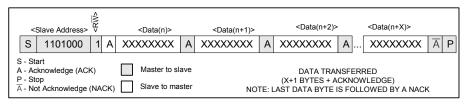
A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge-related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition.

12 of 16

DS1337 I²C Serial Real-Time Clock


Depending upon the state of the R/W bit, two types of data transfer are possible:

- 1) Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte. Data is transferred with the most significant bit (MSB) first.
- Data transfer from a slave transmitter to a master receiver. The master transmits the first byte (the slave 2) address). The slave then returns an acknowledge bit, followed by the slave transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a "not acknowledge" is returned. The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START condition is also the beginning of the next serial transfer, the bus is not released. Data is transferred with the most significant bit (MSB) first.


The DS1337 can operate in the following two modes:

- 1) Slave Receiver Mode (Write Mode): Serial data and clock are received through SDA and SCL. After each byte is received an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit (Figure 3). The slave address byte is the first byte received after the master generates the START condition. The slave address byte contains the 7-bit DS1337 address, which is 1101000, followed by the direction bit (R/W), which, for a write, is 0. After receiving and decoding the slave address byte the device outputs an acknowledge on the SDA line. After the DS1337 acknowledges the slave address + write bit, the master transmits a register address to the DS1337. This sets the register pointer on the DS1337. The master may then transmit zero or more bytes of data, with the DS1337 acknowledging each byte received. The address pointer will increment after each data byte is transferred. The master generates a STOP condition to terminate the data write.
- Slave Transmitter Mode (Read Mode): The first byte is received and handled as in the slave receiver mode. 2) However, in this mode, the direction bit indicates that the transfer direction is reversed. Serial data is transmitted on SDA by the DS1337 while the serial clock is input on SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer (Figure 4 and Figure 5). The slave address byte is the first byte received after the master generates a START condition. The slave address byte contains the 7-bit DS1337 address, which is 1101000, followed by the direction bit (R/W), which, for a read, is 1. After receiving and decoding the slave address byte the device outputs an acknowledge on the SDA line. The DS1337 then begins to transmit data starting with the register address pointed to by the register pointer. If the register pointer is not written to before the initiation of a read mode the first address that is read is the last one stored in the register pointer. The DS1337 must receive a "not acknowledge" to end a read.

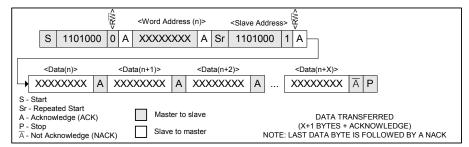
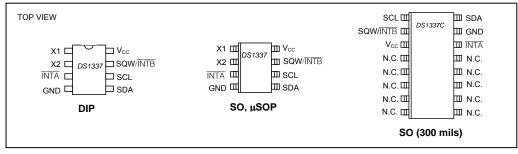

DS1337 I²C Serial Real-Time Clock

Figure 4. Data Read (from Current Pointer Location)—Slave Transmitter Mode

Figure 5. Data Read (Write Pointer, Then Read)—Slave Receive and Transmit

DS1337 I²C Serial Real-Time Clock


HANDLING, PC BOARD LAYOUT, AND ASSEMBLY

The DS1337C package contains a quartz tuning-fork crystal. Pick-and-place equipment may be used, but precautions should be taken to ensure that excessive shocks are avoided. Ultrasonic cleaning should be avoided to prevent damage to the crystal.

Avoid running signal traces under the package, unless a ground plane is placed between the package and the signal line. All N.C. (no connect) pins must be connected to ground.

Moisture-sensitive packages are shipped from the factory dry-packed. Handling instructions listed on the package label must be followed to prevent damage during reflow. Refer to the IPC/JEDEC J-STD-020 standard for moisture-sensitive device (MSD) classifications.

PIN CONFIGURATIONS

CHIP INFORMATION

TRANSISTOR COUNT: 10,950 PROCESS: CMOS

THERMAL INFORMATION

PACKAGE	THETA-J _A (°C/W)	THETA-J _c (°C/W)
8 DIP	110	40
8 SO	170	40
8 µSOP	229	39
16 SO	73	23

PACKAGE INFORMATION

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
	P8+8	21-0043

8 PDIP	P8+8	<u>21-0043</u>
8 SO	S8+2	<u>21-0041</u>
8 μΜΑΧ	U8+1	<u>21-0036</u>
16 SO	W16-H2	<u>21-0042</u>

DS1337 I²C Serial Real-Time Clock

REVISION HISTORY

REVISION DATE	DESCRIPTION	PAGES CHANGED
	Added device access details to General Description section.	1
	Removed leaded ordering numbers from the Ordering Information table.	1
	Added Note 5 to Timekeeping V _{CC} EC table range.	2
	Added "Full Operation" and "Timekeeping" to headers to clarify table usage.	2
	Added OSF parameter to EC table.	3
080508	Updated <i>Pin Description</i> to indicate max input voltage and that unused outputs may be left open.	5
	Added oscillator circuit and show open-drain transistors on Block Diagram.	6
	Added <i>Operating Mode</i> section with details on operating mode and corresponding lcc parameter.	7
	Added $\hat{l}C$ Interface section explaining how to synchronize a microcontroller and the RTC.	8
	Corrected legend in figure 5 for not-acknowledge (add overbar to symbol).	14
071609	Removed conflicting SDA/SCL input bias statement in Pin Description.	5

16 of 16

Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2009 Maxim Integrated Products The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor.